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a b s t r a c t

Smart-home devices are being increasingly used in our daily lives. While these devices
provide convenient functions to users, such convenience may come at a greater cost,
such as the leakage of the user’s private information. This paper presents a system
ChatterHub to address privacy risks in smart-home devices. Specifically, this work focuses
on the devices that use Zigbee or Z-wave and are controlled by a centralized smart-home
hub in a personal area network (PAN) for connecting to the Internet. ChatterHub passively
eavesdrops on encrypted network traffic from the hub and leverages machine learning
techniques to classify events and states of smart-home devices. We deployed ChatterHub
on three real-world smart-home settings to evaluate its accuracy and efficiency. The
evaluation results show that the attacker can successfully disclose smart-home devices’
behaviors with over 89% of recall and F1-score. We also demonstrate that an attacker
can interfere with the smart-home hub’s communication and selectively drop packets
to disable alerting users of a device’s status, such as security sensors and smart-locks.
Furthermore, as a mitigation approach, we developed a packet-injection approach to
effectively prevent threats from ChatterHub by generating only 9.2 MB of extra network
traffic per day.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

According to a recent study [1], on average, 10 smart-home devices were deployed in U.S. houses in 2020. By 2025,
early 75 billion devices will be installed. The proliferation of smart-home devices is mainly due to the convenience
hat users can easily access the devices to monitor and control their homes via smartphones and the Internet access [2].
owever, this convenience comes at a cost. Specifically, the wide use of smart-home devices risks the breach of user
rivacy. An adversary with information about the usages/states of smart-home devices could obtain sensitive and private
nformation about the users and their activities. i.e., what sensors are triggered or when the sensors are used. These device
tates often contain the users’ activities in their home which, in turn, the adversary can use to initiate further offenses,
.g., burglary, with the information. In fact, cyber criminals are increasingly targeting smart-home devices [3].
Recent studies [4,5] demonstrated privacy invasion problems present in smart-home devices. Peek-a-Boo [4] and

pthorpe et al. [5] demonstrated how an Internet Service Provider (ISP) or attackers could learn privacy-sensitive

∗ Corresponding author.
E-mail addresses: omid.s@uga.edu (O. Setayeshfar), ks54471@uga.edu (K. Subramani), x.yuan@uga.edu (X. Yuan), raunak.dey25@uga.edu

(R. Dey), dehong@ucsd.edu (D. Hong), inkee.kim@uga.edu (I.K. Kim), kyuhlee@uga.edu (K.H. Lee).
1 Equal contribution.
https://doi.org/10.1016/j.pmcj.2022.101675
1574-1192/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.pmcj.2022.101675
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2022.101675&domain=pdf
mailto:omid.s@uga.edu
mailto:ks54471@uga.edu
mailto:x.yuan@uga.edu
mailto:raunak.dey25@uga.edu
mailto:dehong@ucsd.edu
mailto:inkee.kim@uga.edu
mailto:kyuhlee@uga.edu
https://doi.org/10.1016/j.pmcj.2022.101675


O. Setayeshfar, K. Subramani, X. Yuan et al. Pervasive and Mobile Computing 85 (2022) 101675

t
i
(
h
s

i
(
a
t
a
t
i

S
c

information from smart-home devices by analyzing wireless network traffic. However, prior works were mainly focused on
smart-home devices with WiFi capability and did not conduct a study on the devices connected via personal area network
(PAN), which is increasingly used for low-cost smart-home devices. Analyzing network traffic in PANs to identify patterns
of user activities and device behaviors is particularly challenging because the network traffic contains events from all the
devices connected to a single smart hub.

This work presents a novel method to attack smart homes and user privacy, called ChatterHub, enabling an adversary
o infer smart home events and user activities by only sniffing encrypted network traffic to/from a target home. More
mportantly, ChatterHub targets devices in PAN that are equipped with Zigbee or Z-wave and require a smart-hub
e.g., Samsung SmartThings [6]) to connect to the Internet. ChatterHub requires neither physical proximity to the target
ome nor prior knowledge of its setup (e.g., list or network topology of devices), making it possible to attack the
mart-homes remotely.
Our insight to design ChatterHub is that users’ activity can routinely trigger smart devices so that an adversary can

dentify and learn distinct patterns in the network traffic despite being encrypted. ChatterHub employs a machine learning
ML) model, trained on traffic patterns of popular smart-home devices and hubs, to infer smart-home devices’ events. The
dversary can further train ChatterHub with their own devices by providing network packet traces and event logs to the
raining platform. Then, ChatterHub automatically partitions the network traces with our novel segmentation algorithms
nd feeds the segmented traces (with event labels) into the ML model to detect the events of smart home devices. Finally,
he adversary can infer users’ activities in the smart home by analyzing the event-triggered times and distinct patterns
n the network traces.

We have evaluated the accuracy and effectiveness of ChatterHub on three real-world smart-home environments with
amsung SmartThings hub and 14 smart-home devices. The results show that ChatterHub can correctly identify various
apabilities and events of each connected smart devices, i.e., lock, switch, or motion by monitoring the encrypted
traffic from the smart-home hub. ChatterHub can also reveal users’ daily routines by identifying devices’ activity, including
changes in the states of smart lock, smart LED, and multi-purpose sensors.

Note that this work is an extension of our previous publication [7]. While our previous work introduced the idea
of ChatterHub with ML methods to infer smart-home devices and their events, this work takes a step further to use
an advanced deep learning (DL) model as a component of ChatterHub and support different attacks for smart-home
devices and the network traffic. More specifically, we improved the accuracy of ChatterHub’s classifier by incorporating
DeepTrafficNet, a mixture of a convolutional network (CNN) [8] and long short-term memory (LSTM) [9], and provide
an in-depth analysis of ChatterHub’s performance with different classification models, such as random forest, seq2seq,
XGBoost, and DeepTrafficNet. In addition, we study selective packet-dropping attacks to understand how they affect
smart home devices’ states and the user’s awareness. We demonstrate that a powerful attacker who can interfere with
the network communication (e.g., compromising the router, man-in-the-middle attack) can selectively drop packets to
disable security monitors (e.g., motion sensors, door contact sensors) and the user commands (e.g., lock the door). As a
result, we show that such attack methods affect the integrity of the devices and the security of the user’s home.

In summary, this paper makes the following contributions:
• We developed ChatterHub, a new attack method against smart-home devices connected via personal area network (PAN).

ChatterHub can identify user activities and devices’ states while the devices are hidden behind a smart-home hub.
• We designed DeepTrafficNet, a new classification model to accurately identify the events and usage patterns of

various smart-home devices from encrypted network traffic. With DeepTrafficNet, ChatterHub successfully recognized
smart-home devices’ events with 89% F1 score.

• We studied packet-dropping attacks. This attack method allows an attacker to affect the integrity of the devices, hence
compromising the security of smart-home.

• We also developed mitigation techniques that could be employed to protect user privacy in smart-home from our
proposed attack model. Specifically, using packet padding and random sequence injection can effectively protect user
privacy with minimal network overhead (e.g., 9.2MB traffic per day).
We structure the rest of the paper as follows. Section 2 defines the adversary model and specify the adversary’s goal.

Section 3 describes the design of ChatterHub and how ChatterHub can collect and analyze data from encrypted network
traces. Section 4 discusses the evaluation results of ChatterHub, and Section 5 describes packet dropping attacks. Section 6
discusses possible mitigation approaches against adversaries using ChatterHub. Section 7 discusses related work, and we
conclude this paper in Section 8.

2. Adversary model and goal

We assume that an attacker only sniffs encrypted network packets from/to the target home. There are three potential
weak points where the attacker can eavesdrop on network traffic. First, the attacker can gain access to the traffic from a
compromised router (e.g., Mirai attack [10]). Second, the attacker eavesdrops on network traffic from the home router’s
uplink traffic (e.g., network sniffing device [11]). Third, the attacker can be one who can monitor the network traffic of
the target home, such as ISPs. Please note that our adversary model is a passive attacker who collects encrypted network
traffic (e.g., TLS/SSL). The attacker only observes limited information in the network traffic, including the size of each

incoming and outgoing packet, the source and destination IPs, and timestamps. However, we assume that the attacker
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Fig. 1. A high level overview of ChatterHub.

annot decode or interpret the information inside an encrypted packet. Moreover, we assume that the attacker can access
etwork data generated from the same model/device of a smart-home hub as the target home (e.g., Samsung Smartthings)
o train a classification model. The attacker can use a pre-trained classification model on a victim’s network to classify the
ctivities of smart-home devices. The attacker does not need prior knowledge of a topology/complete list of smart-home
evices deployed in the target home.

he Goal of the Adversary. Once network packet traces from the target home are obtained, the adversary uses a
lassification model in ChatterHub or trained by the attacker’s hub and devices. The adversary can understand the behavior
sequences of smart-home devices at the target home by doing so. Therefore, we consider that the attacker can achieve
the following goals (but not limited to):

• Scout Attack. The attacker targets a range of IP addresses to find vulnerable home routers, similar to Mirai attack [10].
After gaining access to the routers, the attacker analyzes traffic in routers or through a virtual redirection to a sniffer-
installed device. Understanding the behaviors of smart-home devices will allow the attacker to find vulnerable targets
for a further offensive campaign, such as burglary.

• Targeted Attack. The attacker sniffs the outgoing traffic from the target home by gaining access to network sniffing
tools [11]. After enough scouting, the attacker can understand the smart-home devices’ behaviors, identify patterns of
household activities, and use the patterns for physical assault.

• ISP-level Tracking. ISPs can learn the patterns of the households’ daily life. Such information can be used for targeted
advertising or other unwanted activities, potentially violating users’ privacy.

Target Devices. Two types of smart-home devices are available on the market; (1) WiFi or Ethernet-enabled devices and
(2) devices equipped with home automation network modules, such as Zigbee, Z-wave, or BLE. The category device type
can directly connect to the access point. On the other hand, the second category device cannot connect to the Internet
directly, and they rely on a smart-home hub responsible for controlling communications among devices. Additionally, the
second category devices are hidden behind the hub and considered more secure against remote attackers [12] [5,13–15].
While several existing works [5,13–15] investigated the security and privacy challenges of WiFi-connected devices (the
first type of devices),very few studies exist that concern the security and privacy problems in the second category. This
work mainly focuses on the privacy and security challenges in the second category of the devices in PAN. While there
are several smart-home hubs available on the market, e.g., Apple Home Kit [16], Google Home [17], Amazon Alexa [18],
Samsung SmartThings [6], Simplisafe [19], we use Samsung SmartThings as the primary use case of a smart-home setting.
This is because Samsung SmartThings has a high market share and supports a wide range of smart-home devices [20,21].

3. System design

This section describes the design of ChatterHub. Minimally intrusive monitoring is one of the most important design
goals of ChatterHub as the adversary only requires access to the network traffic from/to the home. Moreover, obtaining
access at this level is ascertained to be relatively more straightforward compared to using eavesdropping devices that
need to be used near the target devices [5,22,23].

Fig. 1 shows an overview of ChatterHub. We use 15 different devices with 12 unique capabilities. Tables 1 and 2 present
detailed information about devices, a list of capabilities, events, and the interactions collected.
3
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Table 1
List of devices and capabilities (ZB: Zigbee and ZW: Z-Wave).
Type Device type Device name Comm. Ch. Capability

Sensors

Multipur. sensors

Centralite micro door sensor ZB activity, contact, temperature

Smartthings multipurpose sensor ZB contact, status, temperatureSamsung multipurpose sensor ZB

Water sensors Iris smart water sensor ZB battery, water, temperatureCentralite water Sensor ZB

Motion sensors Centralite motion sensor ZB motion, battery, temperatureSamsung motion sensor ZB

Actuators

Smart light

SYLVANIA smart 10Y A19 TW ZB

switch, switchLevel, colorTemperatureSYLVANIA smart +

Adjust. White RT5/6
ZB

Sengled element plus ZB

Smart plug Centralite smart outlet ZB switchSylvania SMART + smart Plug ZB

Smart locks Kwikset 10-Button Deadbolt ZW lock, battery

Dimming switches OSRAM LIGHTIFY
Dimming switch

ZB button

Hub Hub Samsung smartThings hub ZB, ZW ping

Table 2
Event types for capabilities.
Capabilities # Events Commands

button (1) 410 push, held
lock (2) 584 lock, unlock
motion (3) 406 inactive, active
switch (4) 1562 on, off
switchLevel (5) 3181 change
temperature (6) 790 change
water (7) 117 dry, wet
colorTemperature (8) 853 change
activity (9) 31 online, offline, hub disconnection
status (A) 572 open, close
contact (B) 708 open, close
battery (C) 16 change

3.1. Training data collection

We collect network traffic to/from our smart-home setup and event logs in the smart-home devices to train the
lassification model. We monitor the network traffic using Wireshark [24] installed on a laptop that is connected to
he Samsung SmartThings hub through a bridged network. We obtain the event labels corresponding to the network
raffic from the logs delivered through the hub. Samsung SmartThings hub stores event logs, e.g., all commands sent to
ts smart-home devices along with timestamps. We collect the logs regularly with ‘‘Simple Event Logger’’ [25] provided
y the manufacturer. The logs are periodically (e.g., 5 min.) stored in a file as CSV format. Through the above procedure,
e can collect over 200k network packets from the smart-hub with over 60k event logs, which will be used to train the
lassification models in ChatterHub. After that, we label the collected network packets. To gather unique network patterns
enerated by the devices, we use the following setups.

. Single device. We connect a single device to the hub at a time and monitor the network traffic generated by the device.
We repeat this for all the devices to identify the unique traffic patterns generated and consumed by the devices.

. Multiple devices. We connect multiple devices to the hub and monitor traffic concurrently generated by multiple
devices. The measured data trains our model on traffic simulated by a more realistic situation. For example, we observed
that packets generated by multiple device commands are often overlapped. Therefore, we feed the overlapped data to
ChatterHub to train such cases. Furthermore, we connect not only smart-home devices to the hub, but also other home
appliances (e.g., laptops, tablets, or smartphones) to the router to represent the real-world workloads.

. Only the hub. We observe network traffic directly from the hub to understand the hub’s behaviors. i.e., periodic check
of firmware update. We collect traffic generated or consumed by the hub in an isolated environment by disconnecting
all devices to correctly understand the hub’s behaviors.

Moreover, the smart-home devices can be classified into two categories; actuators and sensors. We develop an android
pp that automatically triggers various events for the actuators. However, this approach does not work for the sensor-type
4
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Fig. 2. Fixed segmentation vs. changepoint segmentation. (seg.: segment)

devices, so we manually generate events for such sensors, resulting in fewer data collected from the sensor-type devices
than the data collected from actuator devices. We collect the training data from 14 smart-home devices and Samsung
SmartThings hub. Table 1 lists the information of each device, and Table 2 shows the number of interactions collected
from both device types based on their capability.

3.2. Trace segmentation and labeling

We analyze the collected network traces to extract features for the classifier. First, we design a method to filter out
network packets unrelated to the SmartThings hub (e.g., packets generated by other devices connected to the network).
When the hub is registered, it connects to an authentication server (Auth-Server) in the cloud. The hub exchanges
authentication keys with Auth-Server and receives an IP address of a communication server (Comm-Server) in the
loud. The hub then connects to Comm-Server for further communications and operations. The communication channel
etween the hub and Comm-Server always remains established, and network traffic between the hub and Comm-Server
ses this channel. The traffic in this channel shows an almost identical pattern, indicating that it is not feasible to partition
ackets based on the network flows. However, we observe that whenever a packet sequence gets exchanged between the
ub and Comm-Server, it happens over a short time interval (within a few seconds).
Also, the communication interval in packet sequences between two commands is relatively large compared to the

nterval between packets sent for a single command. We thus apply a segmentation method to the collected network
low to divide the traces into small bursts of packets. For the data preprocessing, we remove all ‘‘TCP-ACK’’, certification,
nd authentication packets before the segmentation process. Only the packets related to application data are retained for
urther analysis. In order to segment the network flow into separate bursts, we evaluate various approaches proposed from
revious studies [22,26] that used a fixed threshold of 4.5 s to segment network packets into multiple bursts. Their results
howed that 4.5 s was enough for the communication between a client and server to complete the packets exchange in
heir evaluation setup. However, we observe cases where the time gap between packet exchange for a single command
an last longer than 4.5 s. For example, Fig. 2 shows a case where a fixed threshold approach fails to separate the level
hange event from other events. Also, activities of the hub (e.g., ping, status) can occur along with other device commands
ithin less than 4.5 s. In these cases, the segmentation based on a fixed threshold of 4.5 s often fails to correctly segment
he device commands from other packets (e.g., ping and status). Therefore, we develop a dynamic segmentation technique
sing a change point detection method [27] to correctly segment these packets into the bursts.

ynamic Change Point Detection. Change Point Detection (CPD) is an approach to finding abrupt changes in time-series
ata [27]. This approach can also be used for estimating the temporal point when the statistical properties of a sequence
n observations change [28]. Among several existing implementations of CPD algorithms [29–31], ChatterHub employs
ELT (Pruned Exact Linear Time) [28] because it is computationally efficient and outperforms other exact CPD search
ethods [31]. A change point is a temporal point when the statistical properties of its previous and subsequent time
oints are different. For example, in our smart-home setup, the network packets corresponding to a single command are
ssued in short intervals compared to intervals between two distinct commands. Therefore, a change point will be the
oint when a sequence of packets for a single command/event starts and ends. Since our logs are collected over a long
eriod of time, multiple change points need to be identified to segment all events. We present detailed evaluation results
f Dynamic CPD and fixed threshold segmentation algorithms on our dataset in Section 4.1.

abeling. After the packet segmentation, we acquire event labels from the logs generated by the hub. We use timestamps
or mapping between the label and the segmented trace. However, we observe that slight time differences between
eneration of command log and packet capture can occur. Hence, we use a ±5 s of padding to generate an approximation;
hen, we map the command to a specific burst of packets. We also observe special cases that a single command enables
ultiple capabilities in a device. For example, a ‘‘switch on’’ command activates the switch, and a ‘‘level change’’ event
riggers two capabilities (switch and level). Therefore, a single burst of packets can be mapped to multiple capabilities.
e also observe that a number of segments are not associated with any labels (i.e., no logs from the hub and Comm-
erver), so we label them as unknown. To further characterize the unknown packets, we further analyze the source code
f device handlers [32] and find that the handler generates the event logs, and some of the handlers do not emit any logs.
e observe that most missing events are less important for the user (e.g., device refresh, device ping).
5
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Fig. 3. Label collision matrix for capabilities dataset. This plot shows how unique signatures of the same label collide with other labels.

3.3. Feature extraction

To train the classification models, we extract features from segmented network traffic. From each segment, we form a
ignature by combining the frame length of packets in that segment. This signature is then used as the feature for training
lassifiers. We analyze the overlap of signature features in different capabilities and events of the devices. Fig. 3 shows
he collision of frame length signatures between multiple capabilities. These collisions are expected because when some
evices are activated, they generate multiple capabilities and events simultaneously. For example, a collision between
witch and level can be observed as these capabilities concurrently occur whenever a user turns a switch on and off.
imilarly, contact and status capabilities can concurrently occur when a user opens a door because they are subsequent
vents. Please note that there exist a few overlaps of signature between capabilities and unknown labels.

.4. Comparison of classification algorithms

To infer capabilities and events from extracted network features, we evaluate multiple ML methods, including rule-
ased models, expression-based models, and DL approaches. This section evaluates existing ML models and discusses their
imitations. Then we introduce a novel method to improve classification accuracy in ChatterHub.

We started by employing a rule-based model that classifies the traffic based on simple rules. On plotting the changes in
the number of unique signatures in our training data, we observed that such a fixed-rule-based approach was insufficient
due to an infinite number of signature combinations. Next, we applied regular expression-based models to see if we
could find a fixed set of regular expressions that would correctly explain the signatures. However, we observed that the
signatures with frame length varied often and were difficult to generalize for a single capability or event. Fig. 4 illustrates
the signatures observed for ‘‘switch’’ capability as an example. As shown in Fig. 4, since the signatures are changing
dynamically, leveraging the regular expression-based method appeared to be challenging for addressing such dynamics.

We then evaluated following four ML models; (1) Random Forest, (2) DeepTrafficNet, (3) seq2seq, and (4) OneVsRest.
mong these models, Random Forest is our baseline model [33] because Random Forest, an extension of decision trees,

has been widely used in security domains. The other three models are explained below.
Please note that, for DeepTrafficNet and Random Forest, we preprocess the data via the following steps. We begin by

extracting the frame length from the segmented traffic and create a vector X = ⟨x0...xif ⟩ of packet sizes. Then, we turn
he collected labels to a vector Y = ⟨y0, . . . , yn⟩, where n is the number of labels in the dataset. yi is calculated as 1 if
abeli is present in y. Otherwise, yi will be 0. Finally, to make all Xs the uniform length, we repeatedly pad them until they
orm the desired length. We choose the length to be the 90%tile of sequence lengths in our training set, and the normal
ize of the sequence length is 15.

eepTrafficNet is a custom model for ChatterHub, leverages the combined power of CNN [8] and LSTM [9]. The
rchitecture of DeepTrafficNet is illustrated in Fig. 5. CNN provides effective feature extraction from a large-scale dataset.
STM is adept at learning sequences from data. An advantage of DL, e.g., deep neural networks (DNN), over traditional ML is
he inherent feature extraction, which does not require hand-crafted feature extractions. Moreover, DL shows outstanding
erformance with large-scale training data. Regarding this, we report the performance of DeepTrafficNet with different
izes of the training dataset in Section 4.2.
6
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Fig. 4. Sequences of traffic packet sizes observed for multiple instances of ‘‘switch’’ capability.

Fig. 5. Architecture of DeepTrafficNet.

DeepTrafficNet is designed to reflect the key goals to solve our problem. In particular, we divide the network into three
ranches (Br1, Br2, Br3) operating directly on the input sequence of network traffic, which will be combined to obtain
he final classification result. The architecture and parameters of this network are finalized and tuned with thorough
xperimentation.

Br1. The first branch consists of two 1d-CNN layers of size 128 with a filter size of 3, followed by four dense layers
of size 128 each. Br1 aims to extract important features from the network traffic irrespective of the ordering of the
sequence.
Br2. The second branch has a LSTM layer of size 128, followed by a time-distributed dense layer of size 256. These
layers analyze the sequence and extract all features related to the packet orders. We then use two 1d-CNN layers of
size 128 to co-relate the different sequences learned in the LSTM model and try to further extract essential features
from the LSTM layers. Br2 is first to extract meaningful sequences information, followed by searching for patterns in
the sequences.
Br3. This branch is the inverse of the Br2 branch with the 1d-CNN layers preceding the LSTM layers. Br3 is designed to
perform the first search for meaningful features in the packets, followed by checking the sequence of extracted essential
features. The parameters used are the same as Br .
2
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After executing each of the previous branches, we flatten each of the layers respectively and then obtain a summary
of features using a dense layer of size 128. The last stage of DeepTrafficNet involves five dense layers of size 128,
which perform the final processing. With this procedure, we have the output layer, consisting of a dense block of size
16 corresponding to the respective classes (26 for the network with events). We use rectified linear unit (ReLU) as the
activation function for all the layers except the last one, in which the activation function is sigmoid. We then apply batch
normalization [34] and a dropout [35] of 10% after every layer to prevent over-fitting.

We evaluate the outputs from DeepTrafficNet with a loss function, L(p, q) = 3 × F1(p, q)2 + H(p, q), and find
arameters that minimize the loss function by using f (x, y) = argmin L(f̂ (x), y). The loss function of DeepTrafficNet is a
ombination of F1 and weighted categorical cross-entropy. F1 is expressed as 2 ×

P(p,q)×R(p,q)
P(p,q)+R(p,q) , where P(p, q) =

TP
TP+FP and

(p, q) =
TP

TP+FN . In weighted categorical cross-entropy, the weights are defined as an inverse proportion to the frequency
f occurrence of the respective classes in the training set. i.e., lowest occurring class has the highest weight to counter the
ase of disproportionate class distribution in the training set. We use ADAM [36] optimizer with the default parameters.
eepTrafficNet considers 1.8 million parameters and is implemented using Keras [37] with TensorFlow [38]. We

present detailed results of each classification method on our dataset in Section 4.4.

Sequence-to-sequence (seq2seq) model builds a common framework for solving sequential problems. The input of
seq2seq is a sequence of certain data units, and the output is also a sequence of data units [39]. seq2seq model is widely
used in natural language translation, where the input is usually a sentence, which is a bag of words (tokens) separated
by spaces (or separators). The output is also a sentence but in a different language. In our model, we have a sequence of
features (e.g., package length), and the desired output is a sequence of capabilities and events. In the preprocessing step,
we separate our selected features with a separator (‘space’ in our model). The seq2seq framework contains two main
components: an encoder and a decoder. The encoder reads the sequence of input data, and the decoder translates encoded
data into the final sequence of outputs as specified in the paper [39]. The encoder and decoder are implemented based
on LSTM or multi-layered CNN.

OneVsRest follows one-vs-rest strategy that uses a classifier for each class fitted against all other classes. Given that
our data involves multiple classes, this strategy fits well for our problem. This method ensures that each classifier is
independently optimized to identify features for the corresponding class. As this entails a large number of classifiers, we
use an efficient classifier, such as XGBoost (Extreme Gradient Boosting), as the base classifier for the OneVsRest classifier.
XGBoost is an ensemble method that applies Gradient boosting on decision trees to boost the performance of the various
models [40–42]. We use the XGBClassifier of XGBoost library [43] with its default parameters. After performing the
trace segmentation, we obtain the sequence of packet lengths along with the direction, and then we convert this sequence
of packet lengths into a text sentence. For example, suppose that one of the sequences for switch capability would be
converted to ‘−285+113−1124+113−113’ where the ‘+ ’ and ‘−’ represent the direction. Then, we transform the data
into a vector matrix by using CountVectorizer. For the vectorizer, we set the parameter ngram to consider ngrams of
ange from 1 to 4, such that the relationship between the packets in the sequence are maintained. This transformed count
atrix is then given to the OneVsRest classifier with the XGBoost model as the base classifier to predict the labels.

. Evaluation

.1. Network trace segmentation

This section reports the evaluation results of various segmentation methods with our collected data and the accuracy
esults (precision, recall, and F1) from the segmentation methods. Trace segmentation was performed on the captured
raffic to partition the overall traffic flow between a hub and cloud servers (Auth-Server, Comm-Server) into a set
f small bursts that were mapped to specific commands. An accurate segmentation will ensure that each packet burst
ontains a negligible amount of noisy packets. Note that noisy packets indicate unknown packets or packets for a status
eport of the hub.

As discussed in Section 3.2, we use a PELT-based CPD to segment the network traffic. One reason for choosing CPD over
fixed threshold method is that CDP can produce segments with less noisy signatures over the fixed threshold method,
s shown in Table 3. We found that the number of unique sequences for most capabilities is lesser when segmentation is
erformed using CPD compared to the fixed threshold of 4.5 s We also observe that the range of sequences obtained from
egmentation using a fixed threshold is much longer compared to the segmentation with CPD. Such longer sequences
ften contain more noisy data, hiding the actual signature.
Furthermore, the PELT algorithm can be used with different cost functions, taking the cost function output as a penalty

alue, which affects the segmentation results. We use two cost functions; least squared deviation (L2) and RBF (Radial
asis Function) kernel. We segmented our traffic with these cost functions and used the segmentation results to train our
aseline model (Random Forest). Fig. 6 shows the test results of the trained model with one of our test data. The results
eport different segmentation methods’ classification accuracy (precision, recall, and F1). The highest precision and F1
ere achieved by segmentation with the PELT algorithm (RBF of the cost function and penalty value of 0.2). Therefore,
e used this approach to segment our traffic datasets and train our other models (DeepTrafficNet and seq2seq).
8
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Table 3
Comparison of segmentation methods based on properties of sequences.
Capabilities Changepoint detection segmentation Fixed threshold segmentation

# Unique sequence Sequence size # Unique sequence Sequence size

colorTemperature 32 2–12 48 4–26
level 439 1–51 526 2–152
switch 439 1–51 525 2–152
contact 166 1–23 269 2–247
status 139 2–23 222 2–247
acceleration 97 2–23 152 2–247
threeAxis 131 2–15 127 9–247
button 92 1–20 74 1–90
lock 35 2–14 68 2–49
motion 63 2–11 99 2–24
water 34 2–8 40 2–16
temperature 78 1–10 116 2–27
battery 12 2–10 12 2–16
activity 17 1–12 18 1–35

Fig. 6. Performance evaluation of various segmentation methods.

Fig. 7. Impact of training set size to changing to average F1-score.

4.2. Effect of training data size

As this attack relies on the efficiency of models to classify the traffic datasets into services and events, training quality
and the effort for getting an accurate result can play an essential role for the attacker. We analyze the effect of training
data size on the classification accuracy of a fixed set of testing data. Fig. 7 shows the change of accuracy (F1) with different
training data sizes. The results show that the classification accuracy increases as the size of training data increases. Also,
the efforts required by the attacker will be minimal, which, in turn, makes the attacks even more eminent.

4.3. Evaluation on simulated smart-home

We created a smart-home environment at three authors’ homes and recorded the network traffic from the router. The
SmartThing Hubs in the three homes were connected to the router via WiFi along with other Internet-connected devices
(e.g., laptops, smartphones, tablets). We first trained the classification models of ChatterHub using datasets collected from
the lab setting and one of three smart-home setups. To evaluate the accuracy of the classification models, we used datasets
obtained from the other two smart-homes, which are not used for training. Then, we conducted two experiments with
different attack scenarios; (1) an attacker tried to infer the capabilities of the devices, (2) the attacker tried to detect
specific events in those capabilities.

In the first experiment, the attacker would be aware of ‘‘switch’’ being present and used in the target home. In the
second experiment, we inferred if the attacker would know if a ‘‘switch on’’ or ‘‘switch off’’ had happened. Moreover, to
create more realistic scenarios, we added a water sensor device in the simulated smart-home that was not used when
9
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Table 4
Classification results for capabilities only.
Capabilities Random forest DeepTrafficNet seq2seq XGBoost

Recall F1 Recall F1 Recall F1 Recall F1
button 0.000 0.000 0.672 0.075 0.656 0.491 0.951 0.568
colorTemperature 0.200 0.333 0.125 0.132 0.200 0.333 0.675 0.771
contact 0.388 0.540 0.422 0.561 0.427 0.492 0.402 0.559
level 0.850 0.428 0.713 0.174 0.637 0.333 0.812 0.428
lock 0.196 0.272 0.521 0.276 0.172 0.269 0.182 0.251
motion 0.160 0.196 0.201 0.144 0.406 0.313 0.147 0.187
ping 0.994 0.991 0.995 0.990 0.963 0.978 0.993 0.991
status 0.667 0.764 0.840 0.840 0.703 0.698 0.667 0.777
switch 0.607 0.655 0.705 0.512 0.525 0.376 0.574 0.673
temperature 0.075 0.118 0.205 0.169 0.356 0.302 0.048 0.082
unknown 0.994 0.926 0.975 0.934 0.881 0.880 0.942 0.925
Average 0.888 0.896 0.917 0.852 0.859 0.848 0.888 0.897

Table 5
Classification results for capabilities and events.
Capabilities-events Random forest DeepTrafficNet seq2seq XGBoost

Recall F1 Recall F1 Recall F1 Recall F1
button-held 0.000 0.000 0.091 0.087 0.000 0.000 0.273 0.171
button-pushed 0.000 0.000 0.353 0.383 0.608 0.569 0.863 0.547
colorTemperature-change 0.200 0.333 0.150 0.126 0.175 0.369 0.675 0.771
contact-closed 0.194 0.313 0.387 0.428 0.289 0.296 0.245 0.388
contact-open 0.307 0.419 0.414 0.463 0.502 0.469 0.341 0.455
level-change 0.863 0.430 0.738 0.183 0.631 0.330 0.812 0.428
lock-locked 0.049 0.086 0.049 0.090 0.160 0.217 0.049 0.086
lock-unlocked 0.195 0.230 0.390 0.126 0.012 0.024 0.171 0.206
motion-active 0.060 0.105 0.143 0.145 0.101 0.130 0.053 0.096
motion-inactive 0.236 0.230 0.126 0.123 0.298 0.245 0.238 0.230
ping-ping 0.994 0.991 0.996 0.990 0.962 0.977 0.993 0.991
status-closed 0.391 0.533 0.800 0.584 0.504 0.513 0.470 0.617
status-open 0.479 0.596 0.710 0.404 0.548 0.515 0.645 0.755
switch-off 0.452 0.596 0.710 0.434 0.548 0.515 0.645 0.755
switch-on 0.226 0.055 0.581 0.279 0.290 0.176 0.290 0.375
temperature-change 0.076 0.119 0.098 0.101 0.070 0.102 0.048 0.082
unknown 0.944 0.926 0.964 0.931 0.939 0.918 0.942 0.925
Average 0.881 0.892 0.900 0.864 0.874 0.873 0.882 0.893

we trained the classification model. This addition was to consider a situation where the attacker did not have a complete
list of installed devices in the target home.

Detecting the Hub. The first step was to identify the IP address of SmartThings server (Comm-Server) that communicated
ith the smart-home hub. To this end, we calculated the statistics about the number of packets communicated to each

P address and the IP addresses that contained the packets similar to events related to ‘‘SmartThings hub’s ping’’ and
he count of such ping packets. Using these statistics, we could recognize the IP addresses of Comm-Servers. Although
he hub kept changing the Comm-Server from time to time (usually over days), the information collected was enough to
dentify the servers. Identifying the IP addresses of the hub and Comm-Server helped us collect essential network packets
y ignoring packets communicating between the hub and Comm-Server and the traffic generated by other devices from
he smart home.

lassification. We trained our classification models to classify capabilities and events separately. Table 4 reports the
lassification results for capabilities and events, including recall and F1-score of the models at the level of device
apabilities, such as switch and motion. Table 5 presents the classification results, considering both capabilities and events
rom each device, such as switch-on, switch-off, motion-active and motion-inactive. These models were trained to label
ny sequences they cannot recognize as unknown. If there are devices that were not used in the model training, ChatterHub
ategorized events and capabilities belonging to this device as unknown.
We observed that each model performs better for different classes from these results. Overall, the XGBoost model

ould classify 89% of the capabilities of the smart devices, which implies that the XGBoost model can be used for getting
general idea of the devices in the target home. Then, based on the information from XGBoost, the attacker could use
specific model to obtain more accurate information on a specific device’s capability. To demonstrate this use case, we
esigned two different evaluation cases with our simulated home settings by intentionally deploying different sets of
evices. In the first case setup (case #1), we created a smart-home testbed with all devices, including the water and lock
evices. In the second case (case #2), we created another smart-home testbed with all devices (including water device)
10
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Table 6
Classification results with respect to specific devices in different home setup.
Case Case #1 : Home with lock device Case #2 : Home without lock device

Capability OneVsRest – XGBoost

Recall Precision F1 Count Recall Precision F1 Count

contact 0.880 0.349 0.500 50 0.780 0.448 0.569 50
lock 0.941 1.000 0.970 34 – – – 0
switch 0.762 0.941 0.842 21 0.611 0.846 0.710 18
unknown 0.997 0.996 0.997 7105 0.999 0.975 0.987 1910
Average 0.895 0.822 0.827 0.796 0.756 0.750

Fig. 8. Detected smart lock behaviors. It shows how the lock and unlock events (possibly entry and exit behaviors of tenants) can be recognized by
the adversary.

except for the lock device. As shown in Table 6, our models could detect lock with a precision of ‘‘1’’, indicating that the
classification results have ‘‘0’’ false positive case. On the other hand, even if our models were trained on signatures of
lock, in the case #2 (the testbed without lock device), no lock capability was detected. Therefore, the results show that
our models are accurate enough to detect the presence of devices.

Fig. 8 shows the activities of a smart lock at various times of the day. We measured the devices’ activities for five
consecutive days. The results show that the lock had the events on multiple days at 11:00 a.m. and 11:00 p.m. (23:00).
Based on this observation, the attacker can know the homeowner’s daily schedule. Hence, the classification results with
further analysis of such patterns reveal potential information about the smart-home devices and the users.

4.4. Analysis of classification results

As discussed in Section 3.4, we decided to use Random Forest as the baseline for evaluating the performance of
classifiers, and Random Forest showed the lowest accuracy (recall, precision, F1) among four classification models.

By comparing with Random Forest, we observed that DeepTrafficNet could learn more relevant features leading to
better generalizations. As discussed earlier, DeepTrafficNet could handle unseen signatures better than other models,
resulting in less need for large training datasets. However, we also observed that DeepTrafficNet could generate
inconsistent classification results for some classes. i.e., colorTemperature, motion. Our further analysis revealed that such
inconsistent results were due to the overlapped packets and the shorter packet sequences for those classes.

While seq2seq model showed comparable classification accuracy with DeepTrafficNet for a few cases (but similar
o DeepTrafficNet), we observed that seq2seq failed to handle overlapped packet sequences. seq2seq was designed
o process large-scale (language) datasets, and its performance could be affected by the amount of training dataset.
owever, it was challenging for us to generate enough data to well train seq2seq in our evaluation environments due
o the restricted automation and event generation procedures. Instead, we generated synthesized packet sequences by
oncatenating real sequences. The longer sequence helped seq2seq for better mapping between features and events.
Compared to other models, XGBoost is more resilient to noisy data [44], and it showed more accurate classification

results for overlapped packets. However, we also observed that the signature conflict between capabilities from the same
devices could lead to misclassifications. Since DeepTrafficNet identifies smart-devices’ events with high recall (0.9), an
ttacker could use this model to filter all the smart-devices related packets in general and then use a model such as
GBoost (with F1-score of 0.89) to detect the specific devices and events on the filtered traffic for better accuracy

. Packet dropping attacks

This section discusses packet dropping attack to show its feasibility and effectiveness when an attacker can interfere

ith the network communication using ChatterHub. For packet dropping attack, we tweak our adversary model discussed

11
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Table 7
Results of packet dropping attack per capabilities.
Capabilities Event count Dropped event count

lock 100 100
motion 31 31
switch 100 99

in Section 2 and use an additional assumption that the attacker can selectively drop the network packets (e.g., compro-
mising a router or Man-in-the-middle attack). Please note that we still hold an important restriction on the attacker; that
is, the attacker cannot decrypt the packet to understand the content. The following describes two use cases of the packet
dropping attack and how they will affect smart home devices and the user’s awareness.

Case #1: Dropping Hub Traffic. In this case, the attacker simply drops all network packets generated by and sent to the
smart home hub device. By doing so, any events of the smart devices (e.g., motion detection, temperature change) will
not be reported to the user, and user commands via the smartphone app (e.g., lock the door, turn on the light) cannot be
delivered to target devices. While this attack prevents any command and updates to be relayed from and to the user, we
noticed that the user could receive a notification from her smartphone app, indicating that the hub is offline. On analyzing
the reason for the offline notification, we identified that if the cloud server fails to receive ping messages from the hub for
a certain time interval (e.g., two minutes for Samsung Smartthings Hub), it sends the offline notification to the user app.
To avoid the victim user getting alerted about the hub’s offline status, the attacker could selectively allow network packets
related to hub ping and drop the rest of the traffic. As identified already, the ping from the hub follows a signature of 115
↑ 121 ↓.2 We then configured our attack to allow only the hub pings to pass but block all other traffic. Unfortunately,
it could not completely prevent the hub’s offline status from being notified to the user (but is simply delayed). This is
because, in addition to the periodic ping messages, the hub and the cloud server also exchange other types of packets
that we do not observe from any logs and possibly classified by our classifiers as ‘‘unknown’’. This demonstrates the need
for a more advanced form of packet selection for dropping traffic.

Case #2: Selective Packet Dropping To overcome the defects of previous scenarios, an attacker must use a technique
to differentiate the traffic generated by smart devices events’ from the hub’s event traffic. In this attack, the attacker
selectively drops the packets related to specific device activities identified by ChatterHub. This study connects all the
devices described earlier, choosing the following security-sensitive devices:‘‘switch’’, ‘‘motion’’ and ‘‘lock’’. Table 7 shows
the result of the selective packet dropping attack. We could successfully drop all lock and motion activity packets and 99
out of 100 switch activities packets. As a result, the user did not receive any notification of the motion detection events,
and the user’s commands to lock the door and turn on/off the switch were completely ignored without any notifications.
In this scenario, we observed that dropping selective packets did not affect the status of other devices connected to the
hub or the hub’s status.

6. Discussion and ethical consideration

Mitigation Approach. As ChatterHub detects smart devices and their events by identifying patterns in encrypted network
traffic, we propose to use ‘‘Packet Padding’’ [45] as a mitigation method against ChatterHub. The idea of packet padding is
to generate the identical length of packets by adding bogus bytes at the end of each packet. Network packets with identical
lengths can effectively hide unique patterns in the network traffic, significantly decreasing the accuracy of the classifiers.
We implement the packet padding technique in our testing router to make each packet of exact 1 KByte. In addition
to that, we also developed a random sequence injection method to further mitigate ChatterHub or similar attacks. This
method dilutes the effect of sequence timing by irregularly generating 1 KB packets to the network. When we deployed
both packet padding and random sequence injection methods together, we observed the network traffic became much
more complicated and dynamic. Specifically, when we apply our two mitigation techniques we observe more than 80%
collision in the classification process in ChatterHub. It shows that the proposed mitigation techniques can effectively hide
the unique network patterns generated by each device. Thus the attacker will have a lower chance of learning the states
of smart-home devices.

We evaluate space overhead caused (i.e., additional network traffic generated) by our mitigation techniques from our
testing environments. The results show that only negligible size of additional network packets (9.2 MByte per day on
average) are required to enable the proposed mitigation methods.

Other Smart-home Hubs. As discussed in Section 3, we identify a hub by observing the network traffic patterns that are
regularly and periodically generated by the hub. While we use Samsung Smartthings Hub in this work, we believe the
proposed technique to detect a hub can be transferable and applicable to other smart-home hubs that have noticeable
network patterns between the hub and the server, e.g., health check packets or periodic checks of firmware updates.

2
↑ refers to traffic from hub. ↓ refers to traffic from server.
12
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Overall, our proposed models can also be trained to detect smart home devices connected to those hubs that have not
already implemented any counter-fingerprinting mitigation techniques to their generated network traffic.

Ethical Considerations. The collected data from this work does not contain any personally identifiable information. Our
easurement and data collection procedures only recorded network traffic traces related to smart-home devices and the
ub. We further consult with Human Research Protection department in our institute and confirmed that the data we
ollected is not applicable to IRB approval.

. Related work

There exist a number of studies that fingerprint WiFi-connected smart-home devices by analyzing network traffic
enerated by each device [46–50]. Other works require tapping into the local network to collect network information
rom individual devices [51,52].

Pingpong [53] proposed packet-level network traffic analysis to identify activities of smart-home devices directly
onnected to WiFi network. Pingpong creates unique signatures for smart home devices’ activities by separately analyzing
etwork traffic generated by each device. On the other hand, our work targets smart-home devices connected to the
mart-home hub device via a personal area network (PAN). We only observe the encrypted network traffic from and to
he hub device to identify the status and events generated by each smart-home device. Multiple smart-home devices
imultaneously communicate with the hub, and identifying the events generated by each device is more challenging.
HoMonit [22] is a smart-home monitoring system that identifies misbehaving smart apps. It analyzed encrypted

etwork traffic between the hub and smart-home devices to fingerprint each device by tapping the PAN network to
ollect packets transmitted via ZigBee, ZWave, or BLE. Similarly, Peek-a-Boo [4] captured and analyzed the PAN traffic
etween devices and a hub to identify the activities of smart-home devices. ChatterHub takes a different approach from
heirs. We only monitor network traffic between the smart-home hub and the cloud servers. Thus we do not need any
apping device to capture network traffic via the PAN network.

Zhou et al. [54] investigated security flaws in communications between the smart-home devices and the cloud servers,
ut they did not focus on identifying smart-home devices’ activities.
A number of works focus on the security analysis and improvement for smart-home applications [21,55–60] by finding

ecurity vulnerabilities. i.e., private data leakage, privilege abuse, and malicious activities. Other studies focus on the
nalysis of information flow among smart apps, cloud backend, and IoT devices to discover vulnerabilities in the chain of
nformation transfer [13,61–63].

Apthorpe et al. [45] proposed an approach to mitigate network sniffing attacks in smart homes and suggested routing
he network traffic through VPNs and injecting fake packets to confuse the attackers. Yoshigoe et al. [64] proposed to
enerate synthetic packets that prevent adversaries from fingerprinting smart-home devices. A more sophisticated method
sing differential privacy and adversarial ML was proposed by [65]. Many studies are proposed to extract information from
ncrypted network traffic, e.g., extracting video content [61], demographic information [66], detecting packets generated
rom specific application [67], measuring the quality of service [68], analyzing smart-home tenant behavior [69], and
xtracting the location information [70]. These works are orthogonal to ChatterHub, and we will incorporate these works
o improve the performance of ChatterHub.

8. Conclusion

We present ChatterHub, a novel attack method that can correctly identify the capabilities of smart-home devices with
passive sniffing of encrypted home network traffic. With ChatterHub, an attacker does not need prior knowledge of the
target home. Our evaluation results with three realistic smart-home environments show that the attacker can successfully
recognize the capabilities of smart-home devices from the encrypted network traffic. This, in turn, leads the attacker
to discover device behaviors, such as door lock’s state change. Such information can be used to reveal a households’
daily routines. We also demonstrate two mitigation techniques, packet padding and random sequence injection, which can
effectively protect the smart-home from ChatterHub.

Furthermore, we study the effectiveness of packet dropping attacks, and we demonstrate how an attacker can
manipulate the actions of the smart home devices by selectively dropping packets that can put a smart home exposed to
physical dangers by disabling security monitors such as motion sensors and door contact sensors and skipping door lock
events.
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