
ChatterHub: Privacy Invasion via Smart Home Hub

Omid Setayeshfar∗§, Karthika Subramani∗§, Xingzi Yuan∗, Raunak Dey∗,
Dezhi Hong†, Kyu Hyung Lee∗, and In Kee Kim∗

∗University of Georgia, Computer Science, {omid.s, ks54471, x.yuan, raunak.dey25, kyuhlee, inkee.kim}@uga.edu
†University of California San Diego, Computer Science and Engineering, dehong@ucsd.edu

Abstract—Smart-home devices promise to make users’ lives
more convenient. However, at the same time, such devices increase
the possibility of breaching users’ privacy as they are tightly con-
nected to the users’ daily lives and activities. To address privacy
invasion through smart-home devices, we present ChatterHub.
This novel approach accurately identifies smart-home devices’ ac-
tivities with minimal monitoring of encrypted traffic in the home
network. ChatterHub targets devices that can only connect to the
Internet through a centralized smart-home hub (e.g., Samsung
SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub
passively eavesdrops on encrypted network traffic from the hub
and leverages machine learning techniques to classify events and
states of smart-home devices. Using ChatterHub, an adversary
can identify smart-home devices’ specific activities without prior
knowledge of the target smart home (e.g., list of deployed devices,
types of communication protocols). We evaluated the accuracy
and efficiency of ChatterHub in three real-world smart-home
environments, and the evaluation results show that an attacker
can successfully disclose smart-home devices’ behaviors with
over 88% 𝐹1 score. We further demonstrate that ChatterHub
successfully recognizes privacy-sensitive activities, including open
and close of a smart door lock and turn on and off of smart LED.
Additionally, to mitigate the threats posed by ChatterHub, we
introduce two approaches, packet padding and random sequence
injection. These mitigation approaches can effectively prevent
threats from ChatterHub with only 9.2MB of additional network
traffic per day.

Index Terms—IoT Hub, Smart Home Privacy, Smart Home
Devices, Sniffing Encrypted Network

I. INTRODUCTION

The blooming of the Internet of Things (IoT) promotes

massive smart-home devices to become connected to the

Internet, with an estimate of 10 smart devices per home

on average in 2020 [1]. We expect the number of installed

smart-home devices to reach 75 billion by 2025. Smart-home

devices promise to make the user’s daily life more convenient.

According to a recent study [2], the main reason for smart

device purchase is convenience, as users can easily control

and monitor smart-home devices over the Internet. Most smart-

home devices can be accessed via smart apps on smartphones

or smart-home platforms. e.g., “Front door unlocked at 13:52
by code A”, “Motion detected in living room at 17:03 ”.

However, this convenience comes at a cost. For exam-

ple, an adversary with access to smart-home devices’ state

information (such as what is triggered or used and when),

could acquire sensitive information about the users and their

activities. These device states often contain the users’ activities

in their living space, and the adversary can exploit it to commit

§Equal contribution

further offenses, such as burglary and aggravated robbery.

Indeed, cybercriminals are increasingly targeting smart-home

devices [3]. Recent studies [4], [5] demonstrated privacy in-

vasion problems present in smart-home devices. For example,

Peek-a-Boo [4] showed that attackers could identify smart-

home devices’ states and actions by passively listening to the

wireless around a smart-home. Apthorpe et al. [5] showed an

Internet Service Provider (ISP) could learn privacy-sensitive

information from smart-home devices by analyzing traffic.

This work presents a novel method to attack smart-homes,

called ChatterHub, enabling an adversary to infer smart home

events and user activities by sniffing encrypted network traffic

to/from a target home, even though devices are hidden behind a

smart-hub (e.g., Samsung SmartThings [6]) and do not directly

connect to the Internet. ChatterHub requires neither physical

proximity to the target home nor prior knowledge of its setup

(e.g., list or topology of smart-home devices), making attacks

on smart-homes more feasible.

The intuition behind designing ChatterHub is that users’

activity routine in a smart home can trigger smart devices,

manifesting as distinct patterns in the network traffic, albeit

encrypted, and hence the users’ activities and smart devices’

events are discoverable and learnable. To infer smart-home

devices’ events, ChatterHub employs a classification model

trained with traffic patterns of popular smart-home devices and

hubs. The adversary can further train ChatterHub with their

own devices by providing network packet traces and event logs

to the training platform. ChatterHub automatically partitions

the network trace with our novel segmentation algorithms and

feeds the segmented traces (with event labels parsed from the

event logs) into machine learning models to detect smart home

devices’ events. This way, the attacker can infer the occupancy

pattern of the home by analyzing the event timing and patterns.

We have evaluated the accuracy and effectiveness of Chat-
terHub on real-world testbed environments with Samsung

SmartThings hub and 14 smart-home devices. The results

show ChatterHub can successfully discover the capabilities

and events of the devices, e.g., lock, switch, or motion based

on their encrypted traffic, and reveal users’ daily routines by

tracking devices’ activity, including changes in lock’s state,

smart LED’s state (i.e., on→off, off→on), and multi-purpose

sensor’s states (i.e., detecting motion on doors or windows).

In summary, this paper makes the following contributions:
1) We explore a new adversarial approach against smart-

home devices hidden behind a smart-hub, which could leak

critical user’s privacy, including households’ daily routine.
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Fig. 1: A high level overview of ChatterHub

2) We design a classification model that can accurately iden-

tify the events and usage patterns of various smart-home

devices from encrypted network traffic.

3) We evaluate ChatterHub in three real smart-home environ-

ments. The evaluation results show that ChatterHub can

successfully recognize smart-home devices’ events with

88% 𝐹1 score on average.

4) We show that a combination of packet padding and random

sequence injection techniques can mitigate threats from

ChatterHub at an average cost of 9.2MB traffic per day.

5) All the data sets, source code, and classification models

used in this work are publicly available to the community1.

II. ADVERSARY MODEL, ASSUMPTION, AND GOAL

We assume that an attacker only passively sniffs encrypted

network packets from/to the target home. In this work, we

consider three potential points at which the attacker can

eavesdrop on network traffic. First, the attacker can gain access

to the traffic from a compromised router. Second, the attacker

can eavesdrop on network traffic from the home router’s uplink

traffic. Third, the attacker can be the one who can monitor the

network traffic of the target home, Considering these scenarios,

encryption remains the only form of protection for users’ data.

Nonetheless, our adversary model is a passive attacker who

collects encrypted network traffic (e.g., TLS/SSL). The at-

tacker can only observe the size of each incoming and outgoing

packet, the source and destination IPs, and timestamps. In

addition, the attacker does not rely on decoding or interpreting

the information inside traffic packets.

We also assume the attacker has access to a trained model

or can collect his data from a hub and desired devices to train a

model. However, the attacker does not require prior knowledge

of a targeted smart-home topology or devices deployed.

The Goal of the Adversary. Once the network packet traces

from the target home are obtained, the adversary proceeds to

leverage a classification model, provided by ChatterHub or

trained on the attacker’s own hub and devices. By doing so,

the adversary can understand the pattern of network traffic

generated by the smart-home devices of interest. We consider

that the attacker can achieve the following goals (but not

limited to):

∙ Scout Attack. The attacker targets a range of IP addresses

to find vulnerable home routers, similar to Mirai attack [7].

After gaining access to the routers, the attacker analyzes

traffic either in the routers or through a virtual redirection

1https://github.com/karthikaS03/ChatterHub

to a sniffer installed device. Understanding smart-home

devices’ behaviors will allow the attacker to find vulnerable

targets for a further offensive campaign, such as burglary.

∙ Targeted Attack. The attacker first gains access to network

sniffing tools [8] and sniffs the outgoing traffic. After enough

scouting, the attacker can understand the smart-home de-

vices’ behaviors, identify household activities patterns, and

use the patterns for physical assault.

∙ ISP-level Tracking. Internet providers such as ISPs and

VPNs who has complete access to users’ traffic can learn

the patterns of the households’ daily life. Such information

can be used for targeted advertising based on user behaviors

or other activities, potentially violating users’ privacy [9].

Target Devices. In general, two types of smart-home devices

are available on the market; 1) WiFi or Ethernet-enabled de-

vices and 2) devices equipped with home automation network

modules i.e., Zigbee, Z-wave, or Bluetooth Low Energy (BLE).

The first type of device can directly connect to the access

point. On the other hand, devices in the second category cannot

connect to the Internet directly, so they require a smart-home

hub to manage communications among devices. Additionally,

since the second type of devices is hidden behind the hub, they

are considered to be more secure against remote attackers [10].

A large body of work [5], [11]–[13] studied security and

privacy of the first type of devices, while the security of home

automation network devices (the second type of devices) has

gained little attention. This work focuses on the second type

for their high market share and diversity [14], [15].

III. SYSTEM DESIGN

Minimally intrusive monitoring is the most important goal

of ChatterHub as the adversary only requires access to the

network traffic from/to home. Obtaining access at this level

is ascertained to be relatively simpler compared to using

eavesdropping devices that have to be placed near the target

devices [5], [16], [17].

Fig. 1 illustrates an overview and the control flow of

ChatterHub. In ChatterHub’s training, all the communication

from the devices are transmitted through the hub. We collect

these communication packets through 1) accessing the cloud

backend logs and 2) monitoring the network traffic. Network

traffic will be passed to a segmentation module, which sepa-

rates network traces into sequences associated with events.

A. Training Data Collection
We first collect network packets to/from our smart-home

setup and smart-devices’ event logs, then label them for model
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TABLE I: List of devices and capabilities. Communication

is shown by (�) for Zigbee and (N) for Z-Wave. Capability

references correspond to Table II

Type Device Device Name Cap.

Sens.

Multi

Sensors

Centralite Micro Door Sensor (�) 9, B, 6

Smartthings Multipurpose Sensor (�) B, A, 6

Samsung Multipurpose Sensor (�) B, A, 6

7

Sensors

Iris Smart 7 Sensor (�) C, 6, 7

Centralite 7 Sensor (�) C, 6, 7

3

Sensors

Centralite 3 Sensor (�) 3, 6, C

Samsung 3 Sensor (�) 3, 6, C

Act.

Smart

Lights

SYLVANIA Smart 10Y A19 TW (�) 4, 5, 8

SYLVANIA Smart + Adjust. (�) 4, 5, 8

Sengled Element Plus (�) 4, 5, 8

Smart

Plugs

Centralite Smart Outlet (�) 4

Sylvania SMART+ Smart Plug (�) 4

2s Kwikset 10-1 Deadbolt (N) 2, C

Switches OSRAM LIGHTIFY Dimming 4(�) 1

Hub Hub Samsung SmartThings Hub (�,N) ping

training. In this work, we used 15 different devices with 12

unique capabilities as described in Table I (list of devices),

and Table II (capabilities) shows events associated with each

capability. In our dataset, an event is represented as the

combination of a capability and its event (e.g., switch-on, lock-

unlocked). We used the following setups for model training.

1) Single device. We connect a single device to the hub and

observe the network traffic generated. This is to understand

the unique traffic patterns generated by each device.

2) Multiple devices. We connect multiple devices to the hub

and monitor traffic concurrently generated by all devices;

we use this data to train our model with a more realistic

setup. For example, we observed packets (generated by

multiple device events) often overlapped each other. We

connect not only smart-home devices to the hub, but also

other home appliances (e.g., computers, tablets, smart-

phones) to the router to create more realistic traffic.

3) Only the hub.We also observe the network traffic from an

isolated hub’s (with no other devices attached) operations

to understand the hub’s behaviors (e.g., firmware update).

We connect Wireshark installed on a laptop to Samsung

SmartThings hub through a bridged network to monitor the

network traffic. We obtain event labels from the logs delivered

through the hub. Samsung SmartThings hub stores event logs

(e.g., all events and commands sent to/by smart-home devices

along with timestamps). We collect the logs regularly by using

“Simple Event Logger” [18] provided by the manufacturer. We

have collected over 200,000 network packets from the smart-

hub with over 60,000 event logs and use them for training the

classification model in ChatterHub.

B. Trace Segmentation, Labeling, and Feature Extraction
We first design a method to filter out network packets that

are not related to the SmartThings hub (i.e., packets generated

by PCs or tablets), and then we perform packet segmentation.

TABLE II: Event types for Capabilities

Capabilities # Events Commands
button (1) 410 push, held

lock (2) 584 lock, unlock

motion (3) 406 inactive, active

switch (4) 1562 on, off

switchLevel (5) 3181 change

temperature (6) 790 change

water (7) 117 dry, wet

colorTemperature (8) 853 change

activity (9) 31
online, offline,

hub disconnection

status (A) 572 open, close

contact (B) 708 open, close

battery (C) 16 change

Packet Segmentation.When the hub is registering, it connects

to an authentication server (Auth-Server) in the cloud. The hub

exchanges authentication keys with Auth-Server, and receives

an IP address of a communication server (Comm-Server) in the

cloud. The hub is then connected to Comm-Server for further

communications and operations. This communication channel

between the hub and Comm-Server remains established, and

hub relays the information through this channel. Suppose the

devices communicate with Comm-Server directly via Wi-Fi.

In that case, traffic is segmented based on each session, and

each device’s traffic can be separated based on their unique

destination and source IP addresses. However, the challenge

we encounter is that all communications go through the hub,

and there is a lack of discerning parameters. Thus, it is

not possible to partition packets based on the network flow

information. Also, the communication interval in the sequence

of packets between two events is relatively large compared to

the interval between packets sent for a single event. Thus, we

apply a segmentation method to divide the network traces into

small bursts of packets. To segment the network flows into

separate bursts, we try to leverage approaches from previous

studies [16], [19] that use a fixed threshold of 4.5 seconds

to segment network packets into multiple bursts. Previous

works show that 4.5 seconds is enough for the communication

between a client and server to complete packets exchange.

However, we observed that the time gap between packet

exchange for a single event could last longer than 4.5 seconds.

Fig. 2 shows a case where a fixed-threshold approach fails

to separate the level change event from other events. Also,

events of the hub (e.g., ping, status) can occur along with other

device events within an interval of shorter than 4.5 seconds.

As such, the segmentation based on a fixed threshold often

fails to correctly segment the device events from other packets

(e.g., ping and status). Therefore, we develop a dynamic

segmentation technique using change point detection [20] to

segment these packets into bursts correctly.

Dynamic Change Point Detection (CPD). A change point is

a temporal point when the statistical properties of its previous

and subsequent time points are different. In our smart-home

183

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 30,2024 at 21:30:36 UTC from IEEE Xplore.  Restrictions apply. 



0
100
200
300
400
500
600

Another Segment

Level Change Event

Segment 1

0

306

113

418

113
132

111
146

120

223

103

536

141

416

113 115
121

Fr
am

e 
Le

ng
th

Time (Sec.)

(a) Fixed Segmentation

CPU (FG)

0
100
200
300
400
500
600

Level Change Event
Segment 1

Unknown Event
Segment 2

Another Segment0

306

113

418

113 132 111
146

120

223

103

536

141

416

113 115
121

Fr
am

e 
Le

ng
th

Time (Sec.)

(b) Changepoint Segmentation

CPU (FG)

Fig. 2: Fixed Segmentation vs. Changepoint Segmentation

setup, the network packets for a single event are issued in

short intervals compared to the intervals between two distinct

events. Therefore, a change point will be when a sequence of

packets for a single event starts or ends. Since our logs are

collected over a long time, multiple change points need to be

identified to segment all events. CPD is an approach to find

abrupt changes in time-series [20]. CPD can also be used for

estimating the temporal point when the statistical properties of

a sequence change [21]. ChatterHub employs PELT (Pruned

Exact Linear Time ) [21] because it is computationally efficient

and outperforms other exact CPD search methods [22]. We

present detailed evaluation results of Dynamic CPD and fixed

threshold segmentation algorithms on our dataset in §IV-A.

Labeling. After we segment the packets from network traces

into different bursts, we obtain event labels from the hub’s

logs. We use timestamps to align the labels and the segmented

trace. However, we observe that slight time differences be-

tween generation of event log and packet capture can occur.

Hence, we allow for ±5-the second difference between the

two; then, we map the event to a specific burst of packets.

We also observe special cases where a single user activity
enables multiple events in a device. For example, a “switch

on” user event from the app triggers two events (switch-on

and level-change). Therefore, a single burst of packets could be

mapped to multiple events. We also observe that a number of

segments are not associated with any labels (i.e., no logs from

the hub and Comm-Server) so that we label them as unknown.
To characterize the unknown packets, we further analyzed the

source code of device handlers [23] and found that the handler

generates the event logs, and some of the handlers do not emit

any logs. We found that most of the missing events are less

important for the user (e.g., device refresh, device ping).

Feature Extraction. For feature extraction, we begin by

forming a signature via fetching the frame length of multiple

packets in each segment. We then use this signature as the

feature for our classifier.

These signatures show a significant amount of collision

across different classes. These collisions are the result of

events happening in small intervals or events that some happen

together, e.g., when a user opens a door, both contact-open and

status-open events occur concurrently.

C. Classification Models
We train classification models using extracted network fea-

tures to classify smart home network traffic into smart home

devices’ capabilities and events. Given the dynamic nature of

the data, we consider the following machine learning models:

1) Random Forest, 2) OneVsRest classifier, and 3) SEQ2SEQ.

Random Forest (RF) Model. RF constructs an ensemble of

decision trees by taking a random subset of the features to

decide a node split in building each tree. We only use RF

as a baseline to identify better algorithms because RF largely

depends on the training data’s completeness.

OneVsRest Classifier. A key characteristic of our data is that a

single traffic segment may contain the data related to multiple

capabilities that usually occur together or were subsequently

activated. Therefore, we need a multi-class classifier that can

identify all the classes in segmented traffic. As a result, we

follow the one-vs-rest strategy that uses a classifier for each

class fitted against all other classes. This method ensures that

each classifier is independently optimized to identify features

for the corresponding class. As this entails a large number

of classifiers, we use XGBoost (Extreme Gradient Boosting)

. XGBoost is an ensemble that applies Gradient boosting on

decision trees to boost the performance of the various models

[24]–[26]. In this project, we use the XGBClassifier of

XGBoost library [27] with its default parameters. We use

CountVectorizer as vectorizer, with ngram range from

1 to 4 so that the relationship between the packets in the

sequence is maintained. The output of the vectorizer is directly

fed into the XGBoost model.

SEQ2SEQ Model. Sequence-to-sequence (SEQ2SEQ) model

solves sequential problems. The input to SEQ2SEQ is a series of

data units, and the output is also a sequence of data units [28].

SEQ2SEQ model is applied to address various problems in

multiple disciplines. Specifically, SEQ2SEQ caught our atten-

tion because of its application in natural language translation,

for which the input is usually a sentence and the output is

a sentence in a different language. In our model, we have a

sequence of package lengths, and the output is a sequence of

events. We use sequences of capabilities and events as labels.

It is worth noting that SEQ2SEQ is a model to translate natural

languages, so the order of the sequence will affect the result.

We maintain the original order from ground truth, even if

one label appears multiple times. The SEQ2SEQ framework

contains two main components: an encoder and a decoder.
The encoder reads the input, and the decoder translates the

encoder’s output to a final sequence of outputs [28].

IV. EVALUATION RESULTS

We evaluate ChatterHub with real-world smart-home en-

vironments. In the smart-home setup, we deploy a set of

smart-home devices and other Internet-connected devices (e.g.,

laptops, smartphones), and then we connect them to the hub.
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A. Network Trace Segmentation
We perform trace segmentation on the captured traffic to

partition the overall traffic flow between the hub and cloud

servers (e.g., Comm-Server) into a set of small bursts, which

map to specific commands. Therefore, ChatterHub first needs

to identify the IP address of the target hub, and then it performs

network trace segmentation, which will generate a set of proper

packets related to a specific command/event from the devices

at a time. An accurate segmentation will ensure that each

packet burst contains a negligible amount of noise packets.

Note that noise or noisy packets indicate unknown packets or

packets for the hub’s status report. The hub randomly sends

these packets to the cloud servers.

Identifying the IP address of the Hub. We monitor all

network traffic from and to the target home router and identify

the hub’s IP using the pattern signature of “hub’s ping” events.

While the hub keeps changing the IP address of Comm-server
from time to time (usually over days), we can successfully

identify the IP address of Comm-Servers. Then, we can extract

necessary traffic between the hub and Comm-Server (excluding

the traffic from other devices in the home).

Network Trace Segmentation. As we discussed in §III-B,

we develop a PELT-based Dynamic Change Point Detection

(CPD) algorithm to segment the network traffic.

The PELT algorithm can be used with different cost func-

tions, and it takes the output of the cost function as a penalty

value, which affects the segmentation results. We compare

the two most dominant cost functions, least squared deviation

(L2) and kernalized mean change with radial basis function

(RBF) kernel by running their output through our baseline

model. Fig. 3 shows the results of classification for different

parameters. We use PELT (RBF cost function and penalty

value of 0.2), which achieved the best 𝐹1 and precision.

B. Evaluation in Smart-home Environments
To evaluate ChatterHub in the real world, we set up three

smart-home environments at three homes along with other

devices and record the network traffic from their home router

for a total of 10 days.

We train the classification models with data collected from

the lab setting (explained in §III-A) plus the data obtained

from one of three home configurations. We then test the model

on data from two remaining smart homes not used for training.

After the model training, we conduct two experiments; 1)

an attacker tries to infer the capabilities of devices, and 2) an

TABLE III: Classification results for capabilities and events

Capabilities Random Forest SEQ2SEQ XGBoost
R. 𝐹1 R. 𝐹1 R. 𝐹1

button-held 0.00 0.00 0.00 0.00 0.27 0.18

button-pushed 0.00 0.00 0.61 0.57 0.98 0.73

colorTemperature 0.23 0.37 0.17 0.27 1.00 0.96

contact-closed 0.25 0.32 0.29 0.30 0.40 0.44

contact-open 0.37 0.45 0.50 0.47 0.47 0.54

switchLevel 0.87 0.42 0.63 0.33 0.89 0.55

lock-locked 0.71 0.50 0.77 0.46 0.77 0.53

lock-unlocked 0.12 0.17 0.06 0.10 0.77 0.68

motion-active 0.08 0.12 0.10 0.13 0.48 0.17

motion-inactive 0.28 0.23 0.30 0.25 0.62 0.36

ping-ping 0.96 0.98 0.96 0.98 1.00 0.99

status-closed 0.49 0.57 0.50 0.52 0.69 0.80

status-open 0.60 0.63 0.80 0.66 0.77 0.74

switch-off 0.58 0.71 0.55 0.52 0.71 0.80

switch-on 0.13 0.17 0.29 0.18 0.32 0.38

temperature 0.63 0.25 0.07 0.10 0.77 0.37

unknown 0.59 0.73 0.94 0.92 0.95 0.90

𝐹1 Known Average 0.83 0.72 0.78 0.81 0.92 0.76

𝐹1 Average 0.69 0.73 0.88 0.88 0.93 0.82

attacker tries to detect specific events of those capabilities. For

example, the attacker will be made aware of “switch” being

present and used in the first experiment’s target home. The

attacker will then infer if a “switch on” or “switch off” has

happened in the second experiment.

It is worth noting that when we test the classification

models, we add more sensors and devices (e.g., water sensor),

which do not exist in the training dataset, to two test smart-

homes to test the scenario where the attacker does not have a

list of installed devices in the target home.

Classification Accuracy: We generate the ground truth for

two different sets of labels (capabilities and events) so that

we can train our classification models on both data sets to

classify capabilities and events separately. Table III reports the

classification accuracy (recall, and 𝐹1-score) of events from

each device, such as switch-on, switch-off, motion-active and

motion-inactive. If some devices in the target home have not

been used in the model training, ChatterHub categorizes the

events and capabilities belonging to this device as unknown.
This is also observed from our results in the case of water
capability, as shown in Table IV; where “0” for water sensor

activities means water sensor was not used while training.

Overall, our classifiers generate multi-label outputs, indicat-

ing that a single segment of traffic packets can be classified

into more than one class. Thus, our models identify multiple

activities happening concurrently without an explicit time gap

in the transmission of the network packets. The classification

results reported in Table III are the accuracy of each class.

To decide the models’ overall performance, we calculate the

micro average score for 𝐹1 and recall (𝜇𝐴𝑣𝑔) [29], which

takes into consideration the imbalanced class sizes. 𝜇𝐴𝑣𝑔

calculates a 𝐹1-score across different classes by adding up their
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Fig. 4: Effect of training set size to the 𝐹1-score (XGBoost)

respective confusion quadrants. This shows how a multi-class

model considers the whole class list to reduce bias towards

their underlying class distribution. The average of 𝐹1-score is

calculated by
2×

∑
𝑡𝑝𝑖

2×
∑

𝑡𝑝𝑖+
∑

𝑓𝑝𝑖+
∑

𝑓𝑛𝑖
, where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝, 𝑓𝑛 indicate

true positive, true negative, false positive, and false negative,

respectively. 𝑓𝑝𝑖 denotes the number of false positives for the

𝑖𝑡ℎ class. We report this result as Average in Table III.

However, since the focus of our system is to detect known
device activities, we calculate the 𝜇𝐴𝑣𝑔 for only the known
classes and exclude unknown classes from the computation.

The average results are reported as known-average.

Among three classification models, RF (the baseline model)

shows the lowest recall, and precision III. Overall, SEQ2SEQ

gives us the highest 𝐹1-score (0.81) for known-average, com-

pared to the XGBoost model’s 𝐹1 result of 0.76. Although the

XGBoost model has a higher individual 𝐹1-score for some of

the capabilities and events, the average 𝐹1-score is lower be-

cause of higher false positive cases resulting in lower precision

score. On the other hand, SEQ2SEQ shows higher precision

results, indicating that SEQ2SEQ’s accurate performance for

identifying the events of devices. Based on this observation,

this limitation of SEQ2SEQ in identifying some activities is in

overlapped packet sequences. But XGBoost is more resilient

to such noise in the data [30]. Hence, it shows higher accuracy

in the presence of overlapped of packets. However, XGBoost’s

misclassification is a result of signature conflicts between

multiple activities from a same device.

Effect of Training Data Size. As this attack relies on the

model to accurately classify traffic, we further analyze the

impact of training data size on a fixed set of test data

classification accuracy. Fig. 4 shows how XGBoost 𝐹1-score

changes as the size of training data grows. The results show

the accuracy increases with the size of training data. And,

decent accuracy is possible with fewer training data.

C. In-Depth Analysis of Smart-Home Results
Our threat model is based on attackers’ capabilities to

monitor network traffic in a smart home to infer the smart

home devices’ activities and the user’s behavior. Therefore,

while our efforts are to create a model that works best in all

scenarios, we demonstrate our model is useful for attackers

to identify private information about the user and her home

correctly. In this section, we explain such cases in detail.

Target Classification Model for Specific Devices.We discuss

how an attacker can use a specific model to obtain more

accurate information on a targeted device from its capabilities.

In this case, we train our XGBoost model only to detect three

TABLE IV: Classification results w/ and w/o a specific (Lock)

device in different home setups. (R: Recall, P: Precision)

Case #1 : Home w/ Lock Case #2 : Home w/o Lock

Capability
OneVsRest – XGBoost

R P 𝐹1 R P 𝐹1

Contact 0.88 0.35 0.50 0.78 0.45 0.57

Lock 0.94 1.00 0.97 - - -

Switch 0.76 0.94 0.84 0.61 0.85 0.71

Unknown 0.99 0.99 0.99 0.99 0.98 0.99

Average 0.90 0.82 0.83 0.80 0.76 0.75

capabilities (contact, lock, and switch). To this end, we use a

single trained XGBoost model and design two different evalu-

ation test sets with intentionally deploying different devices

(e.g., lock). In the first case setup (case #1), we create a

smart-home testbed with all devices, including lock and water.

In the second case (case #2), we create another smart-home

testbed with all devices, including water except the lock. As

shown in Table IV, in case #1, our model was able to detect

lock with a precision of “1.00” indicating the model has no

false-positives. Moreover, even if our model was trained on

signatures of lock, in case #2 (the testbed without lock device),

no lock capability was detected. Therefore, our model is highly

accurate in detecting the presence of the devices.

Identifying Recurring Patterns. Fig. 6 shows the activities

of a smart lock at various times of day. We measured the

device’s activities for 5 consecutive days. The results show

that at 11:00 and at 23:00, the lock had the events on multiple

days at the same time. Based on this observation, the attacker

can infer the homeowner’s daily schedule. Hence, with further

analysis of such patterns, the classification results could reveal

information on the smart-home devices and the users.

Another example is the switch-on/off events reported in Ta-

ble III. 𝐹1-scores of these events by XGBoost are 0.38 (switch
on) and 0.80 (switch-off). Although 𝐹1-scores are less than 0.8,
ChatterHub can still identify user actions with light switches

(e.g., user turning lights on/off). Fig. 5 shows ChatterHub
correctly identifies 20 out of 25 events. ChatterHub only has

three misclassifications (i.e., event on recognized as off, and

vice versa) and two false detections (i.e., non-switch events

recognized as switch events but part of the switch device

itself). Further, the patterns of on/off events provide more

confidence in the actual presence of a smart light in the home.

Day #5

Day #4

Day #3

Day #2

Day #1

00:00 08:00 16:00 24:00

level
On

On
Off On

Off On Off On
On

Off
On

level Off
On On

On
Off On Off

level level

On
Off

Off

True Detection (TP)
False Detection (FN)
Misclassified Events (FP)

Time in 24-Hour Format

Fig. 5: Switch events detected by ChatterHub.
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V. DISCUSSIONS

Mitigation Approach. ChatterHub identifies the events of

devices by monitoring encrypted packets, including the size

of each packet, the order of packets in a sequence, and the

timing of sequences. Packet padding [31] is an intuitive and

effective mitigation method against ChatterHub. It generates

packets with identical lengths by adding additional bytes at

each packet’s end, i.e., padding. Packet padding can effectively

hinder ChatterHub and other similar attack methods. We

implement packet padding in our testing router, and it pads

each packet in a sequence to 1KB. We evaluate packet (space)

overhead caused by the padding with three traces collected

from our testbed. The result shows that only a negligible

amount of traffic is generated by this method (on average,

9.2MB per day). Furthermore, we develop a random sequence

insertion method for diluting the effect of sequence timing

by irregularly generating 1Kb packets to the network. When

deploying both packet padding and random sequence insertion

methods, an additional 10MB of network traffic is additionally

generated per day, and more than 80% collision is observed in

the classification process; thus, the attacker will have a very

low chance of learning patterns from the network traffic.

Overlapped Packets. As we discussed in §III-A, the overlap-

ping of packet sequences is one of the major challenges to

accurate classification. Suppose the target home has a larger

number of smart-home devices than our experiment setup.

In that case, there will be more chances for overlapping of

packet sequences, implying that ChatterHub’s classification

results can be less accurate. However, our setup conservatively

constitutes realistic smart-home setups as we deploy many

devices (14+) that repeatedly generate network traffic, so we

believe there will be minimal impact on the classification

accuracy with more devices. Another potential limitation is

when the target home has multiple devices of the same type,

ChatterHub cannot tell which one contributes to the detected

capability. For example, if the target home has two identical

smart lock devices installed on two separate doors, the attacker

would be able to recognize all the lock activities but cannot

distinguish one lock from the other.

VI. RELATED WORK

Most of the research works that follow fingerprinting smart-

home devices from network traffic focus on independent

devices that directly connect to WiFi [32]–[37] unlike our

setup where devices are connected to a central device (hub).

These works also requires tapping to the local network for

information on individual devices [38], [39] unlike our threat

model where the network tapping can be acquired remotely.

Pingpong [40] proposes packet-level network traffic anal-

ysis to identify activities of smart-home devices. Similar to

ChatterHub, Pingpong analyzes packet-level traffic to create

unique signatures for smart home devices’ activities. However,

they only study WiFi-connected devices, but our focus is

smart-home devices hidden behind the hub, increasing the

complexity of network traffic. We observe that many security-

critical devices (e.g., smart lock, motion sensor, smart switch)

are hidden behind the hub to be more secure.

HoMonit [16] is a smart-home monitoring system that iden-

tifies misbehaving smart apps. They have analyzed encrypted

network traffic between the hub and smart-home devices to

fingerprint each device. However, it requires tapping into the

network between the hub and the devices. Similarly, Peek-

a-Boo [4] focuses on capturing the traffic between devices

and a hub. However, our work focuses on the communication

between a hub and the cloud servers (e.g., Auth-Server and

Comm-Server). Due to hub devices’ inter-operability, finger-

printing devices by analyzing the hub and server communi-

cations becomes complicated and difficult, compared to the

encrypted traffic analysis done on HoMonit. Also, Zhou et

al. [41] investigated potential security flaws in communications

between the smart-home devices and the cloud servers, but

this work does not focus on identifying smart-home devices’

activities inferred from encrypted traffic.

A number of works focus on the security analysis and im-

provement for smart-home applications [15], [42]–[47] where

they discovered security vulnerabilities, i.e., private data leak-

age, privilege abuse, and malicious activities. Other studies

focus on the analysis of information flow among smart apps,

cloud backend, and IoT devices to discover vulnerabilities in

the chain of information transfer [11], [48]–[50].

While existing solutions mainly focus on preventing the leak

of sensitive data from the context of smart apps, cloud back-

end, and/or the smart-home platform, this work demonstrates

that an adversary can still infer activities and states of smart-

home devices by eavesdropping on encrypted network traffic.

Apthorpe et al. [31] proposed an approach to mitigate

network sniffing attacks in a smart-home environment and

suggested routing the network traffic through VPNs and in-

jecting fake packets to confuse the attackers. Yoshigoe et

al. [51] proposed to generate synthetic packets that prevent

adversaries from fingerprinting smart-home devices. A more

sophisticated method using differential privacy and adversarial

machine learning has been suggested by [52]. There are

many studies to extract information from encrypted network

traffic, such as extracting video content [48], demographic

information [53], detecting packets generated from specific ap-

plication [54], measuring the quality of service [55], analyzing

smart-home tenant behavior [56], and extracting the location

information [57]. Also, there are approaches [58], [59] to build

multipurpose tools to facilitate analysis of encrypted network

traces. These works are orthogonal to ChatterHub.
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VII. CONCLUSION

In this paper, we present ChatterHub, a novel attack method

that can correctly identify smart-home devices’ capabilities

with passive sniffing of encrypted home network traffic. With

ChatterHub, an attacker does not need any prior knowledge

of the target home. Our evaluation results from three re-

alistic smart-home environments show that the attacker can

successfully recognize smart-home devices’ capabilities from

the encrypted network traffic. This, in turn, leads the attacker

to discover device behaviors, such as door being locked or

motion in the room. Such information can be used to reveal a

household’s daily routine. We also demonstrate two mitigation

techniques – packet padding and random sequence injection –

that can effectively protect the smart-home from ChatterHub.
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